人気ブログランキング | 話題のタグを見る


研究生活の備忘録です。https://sites.google.com/site/satoshitakahashi17


by stakahashi17

カテゴリ

全体
野外実習準備メモ(東栄町実習)
論文紹介
研究状況
イベント
所感
未分類

以前の記事

2024年 03月
2024年 02月
2024年 01月
2023年 12月
2023年 11月
2023年 10月
2023年 09月
2023年 08月
2023年 07月
2023年 05月
2023年 03月
2023年 02月
2023年 01月
2022年 12月
2022年 11月
2022年 10月
2022年 09月
2022年 08月
2022年 07月
2022年 06月
2022年 05月
2022年 04月
2022年 03月
2022年 02月
2022年 01月
2021年 12月
2021年 11月
2021年 10月
2021年 09月
2021年 05月
2021年 03月
2020年 12月
2020年 11月
2020年 09月
2020年 08月
2020年 05月
2020年 04月
2020年 02月
2020年 01月
2019年 12月
2019年 11月
2019年 09月
2019年 08月
2019年 07月
2019年 04月
2019年 03月
2018年 12月
2018年 10月
2018年 09月
2018年 08月
2018年 07月
2018年 06月
2018年 05月
2018年 02月
2018年 01月
2017年 12月
2017年 10月
2017年 08月
2017年 07月
2017年 06月
2016年 09月
2016年 03月
2016年 02月
2015年 11月
2015年 09月
2015年 06月
2015年 02月
2015年 01月
2014年 11月
2014年 10月
2014年 09月
2014年 08月
2014年 05月
2014年 03月
2014年 02月
2014年 01月
2013年 12月
2013年 11月
2013年 10月
2013年 09月
2013年 08月
2013年 06月
2013年 05月
2013年 04月
2013年 03月
2013年 02月
2013年 01月
2012年 12月
2012年 11月
2012年 10月
2012年 08月
2012年 06月
2012年 05月
2012年 04月
2012年 03月
2012年 02月
2012年 01月
2011年 12月
2011年 11月
2011年 10月
2011年 09月
2011年 08月
2011年 07月
2011年 06月
2011年 05月
2011年 04月
2011年 03月
2011年 02月
2010年 11月
2010年 10月

フォロー中のブログ

Life is Beau...

メモ帳

最新のトラックバック

ライフログ

検索

タグ

その他のジャンル

ブログパーツ

最新の記事

雨ばかりの出張月間
at 2024-03-09 22:18
2023年度の論文整理
at 2024-02-10 11:09
卒論がおわったところです。
at 2024-02-06 22:21
新年になっていた。
at 2024-01-13 21:57
遂に体調を崩す。
at 2023-12-08 20:26

ファン

記事ランキング

ブログジャンル

科学

画像一覧

雨ばかりの出張月間

2月後半は島根大学に出張してきました。
3日間の集中講義を行うためです。40人を前に地質、層序、古環境指標、地球史について授業を行いました。授業後の質問も多く、提出されてきたレポートも力作揃いで刺激になりました。松江の城下をジョギングするのが楽しみでしたが、あいにく3日間すべて雨でした。。。
雨ばかりの出張月間_e0208576_22164871.jpeg
すぐに名古屋に戻り大事なお役目を果たした後は、3月前半学部2年生の野外実習のために東栄町へ出張です。3つの班の野外調査の引率するのがお役目でしたが、こちらも2日目からあいにくの雨、、。 野外調査を切り上げた日は、グリーンハウス近接の博物館を見学しました。はじめて見に行ったのですが、岩石の展示がとても充実していました。(地向斜の展示はそろそろ改めた方がよいかも。。。)。幸い、事故無く調査実習が続いているので、充実させて帰ってきてもらいたいものです。
雨ばかりの出張月間_e0208576_22172108.jpeg
雨ばかりの出張月間_e0208576_22173411.jpeg

3月は出張予定がまだまだ続きます。

# by stakahashi17 | 2024-03-09 22:18 | 所感

2023年度の論文整理

2023年度、読んだ論文をまとめていませんでした。ファイル名やフォルダ整理が不十分なPDFの数々。。。。一度、まとめておきます。
今年度、取り組んでいたことがみえてきました。

4月から整理していなかった論文 今年度の取り組みごとに整理してみたいと思います

1.ケロジェンの研究について調べる
Wang, X., Wu, M., Ma, S., Su, J., He, K., Wang, H., Zhang, S., 2023. From cyanobacteria to kerogen : A model of organic carbon burial. Precambrian Res. 390, 107035. https://doi.org/10.1016/j.precamres.2023.107035
Schito, A., Muirhead, D.K., Parnell, J., 2023. Earth-Science Reviews Towards a kerogen-to-graphite kinetic model by means of Raman spectroscopy. Earth-Science Rev. 237, 104292. https://doi.org/10.1016/j.earscirev.2022.104292
Demoulin, C.F., Lara, Y.J., Lambion, A., Javaux, E.J., 2024. Oldest thylakoids in fossil cells directly evidence oxygenic photosynthesis. Nature 625, 1–6. https://doi.org/10.1038/s41586-023-06896-7
Slater, B.J., 2024. Life in the Cambrian shallows : Exceptionally preserved arthropod and mollusk microfossils from the early Cambrian of Sweden XX, 1–5. https://doi.org/10.1130/G51829.1/6200242/g51829.pdf
Cook, E.J., Van Geel, B., Van Der Kaars, S., Van Arkel, J., 2011. A review of the use of non-pollen palynomorphs in palaeoecology with examples from Australia. Palynology 35, 155–178. https://doi.org/10.1080/01916122.2010.545515
Tyszka, J., Godos, K., Goleń, J., Radmacher, W., 2021. Foraminiferal organic linings: Functional and phylogenetic challenges. Earth-Science Rev. 220. https://doi.org/10.1016/j.earscirev.2021.103726
Brocks, J.J., Nettersheim, B.J., Adam, P., Schaeffer, P., Jarrett, A.J.M., Güneli, N., Liyanage, T., van Maldegem, L.M., Hallmann, C., Hope, J.M., 2023. Lost world of complex life and the late rise of the eukaryotic crown. Nature 618, 767–773. https://doi.org/10.1038/s41586-023-06170-w
Wehrmeister, U., Soldati, A.L., Jacob, D.E., Häger, T., Hofmeister, W., 2010. Raman spectroscopy of synthetic, geological and biological vaterite: a Raman spectroscopic study. J. Raman Spectrosc. 41, 193–201. https://doi.org/10.1002/JRS.2438
2.地球史の授業を更新する
地球システム
Bradley, D.C., 2011. Secular trends in the geologic record and the supercontinent cycle. Earth-Science Rev. 108, 16–33. https://doi.org/10.1016/j.earscirev.2011.05.003
Guilbaud, R., Poulton, S.W., Butterfield, N.J., Zhu, M., Shields-Zhou, G.A., 2015. A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nat. Geosci. 8, 466–470. https://doi.org/10.1038/NGEO2434
Song, Huyue, An, Z., Ye, Q., Stüeken, E.E., Li, J., Hu, J., Algeo, T.J., Tian, L., Chu, D., Song, Haijun, Xiao, S., Tong, J., 2023. Mid-latitudinal habitable environment for marine eukaryotes during the waning stage of the Marinoan snowball glaciation. Nat. Commun. 14. https://doi.org/10.1038/s41467-023-37172-x
Kaiho, K., Shizuya, A., Kikuchi, M., Komiya, T., Chen, Z.Q., Tong, J., Tian, L., Gorjan, P., Takahashi, S., Baud, A., Grasby, S.E., Saito, R., Saltzman, M.R., 2024. Oxygen increase and the pacing of early animal evolution. Glob. Planet. Change 233, 104364. https://doi.org/10.1016/j.gloplacha.2024.104364
Ernst, L., Barayeu, U., Hädeler, J., Dick, T.P., Klatt, J.M., Keppler, F., Rebelein, J.G., 2023. Methane formation driven by light and heat prior to the origin of life and beyond. Nat. Commun. 14, 0–9. https://doi.org/10.1038/s41467-023-39917-0
Chen, X., Shields, G.A., Andersen, M.B., Qiu, C., Min, S., Shao, Q., Ling, H., 2023. Oceanic redox conditions during the terminal Cambrian extinction event. Chem. Geol. 626, 121456. https://doi.org/10.1016/j.chemgeo.2023.121456
Walton, C.R., Ewens, S., Coates, J.D., Blake, R.E., Planavsky, N.J., Reinhard, C., Ju, P., Hao, J., Pasek, M.A., 2023. Phosphorus availability on the early Earth and the impacts of life. https://doi.org/10.1038/s41561-023-01167-6
カンブリア
Pates, S., Botting, J.P., Muir, L.A., Wolfe, J.M., 2022. Ordovician opabiniid-like animals and the role of the proboscis in euarthropod head evolution. Nat. Commun. 13, 1–15. https://doi.org/10.1038/s41467-022-34204-w
Zeng, H., Zhao, F., Niu, K., Zhu, M., Huang, D., 2020. An early Cambrian euarthropod with radiodont-like raptorial appendages. Nature 588, 101–105. https://doi.org/10.1038/s41586-020-2883-7
Zhang, X., Briggs, D.E.G., 2007. The nature and significance of the appendages of Opabinia from the Middle Cambrian Burgess Shale. Lethaia 40, 161–173. https://doi.org/10.1111/j.1502-3931.2007.00013.x
202312110837.pdf, n.d.
Smith, M.R., Caron, J.B., 2015. Hallucigenia’s head and the pharyngeal armature of early ecdysozoans. Nature 523, 75–78. https://doi.org/10.1038/nature14573
Murdock, D.J.E., Dong, X., Repetski, J.E., Marone, F., Stampanoni, M., Donoghue, P.C.J., n.d. The origin of conodonts and of vertebrate. Nature. https://doi.org/10.1038/nature12645
Shirley, B., Grohganz, M., Bestmann, M., Jarochowska, E., 2018. Wear, tear and systematic repair: Testing models of growth dynamics in conodonts with high-resolution imaging. Proc. R. Soc. B Biol. Sci. 285. https://doi.org/10.1098/rspb.2018.1614
Zhang, Y., Feng, Q., Nakamura, Y., Suzuki, N., 2021. Microfossils from the Liuchapo Formation : Possible oldest radiolarians from deep-water chert and phylogenetic analysis. Precambrian Res. 362, 106312. https://doi.org/10.1016/j.precamres.2021.106312
オルドビス紀
Finnegan, S., Bergmann, K., Eiler, J.M., Jones, D.S., Fike, D.A., Eisenman, I., Hughes, N.C., Tripati, A.K., Fischer, W.W., 2011. The magnitude and duration of late Ordovician-early Silurian glaciation. Science (80-. ). 331, 903–906. https://doi.org/10.1126/science.1200803
Jones, D.S., Martini, A.M., Fike, D.A., Kaiho, K., 2017. A volcanic trigger for the late ordovician mass extinction? Mercury data from south china and laurentia. Geology 45, 631–634. https://doi.org/10.1130/G38940.1
Zondervan, J.R., Hilton, R.G., Dellinger, M., Clubb, F.J., Roylands, T., Ogrič, M., 2023. Rock organic carbon oxidation CO2 release offsets silicate weathering sink. Nature 623, 329–333. https://doi.org/10.1038/s41586-023-06581-9
Li, N., Li, C., Algeo, T.J., Cheng, M., Jin, C., Zhu, G., Fan, J., Sun, Z., 2021. Redox changes in the outer Yangtze Sea (South China) through the Hirnantian Glaciation and their implications for the end-Ordovician biocrisis. Earth-Science Rev. 212. https://doi.org/10.1016/j.earscirev.2020.103443
石炭紀
Robinson, J.M., 1990. Lignin, land plants, and fungi: Biological evolution affecting Phanerozoic oxygen balance. Geology 18, 607–610. https://doi.org/10.1130/0091-7613(1990)018<0607:LLPAFB>2.3.CO;2
Lankiewicz, T.S., Choudhary, H., Gao, Y., Amer, B., Lillington, S.P., Leggieri, P.A., Brown, J.L., Swift, C.L., Lipzen, A., Na, H., Amirebrahimi, M., Theodorou, M.K., Baidoo, E.E.K., Barry, K., Grigoriev, I. V., Timokhin, V.I., Gladden, J., Singh, S., Mortimer, J.C., Ralph, J., Simmons, B.A., Singer, S.W., O’Malley, M.A., 2023. Lignin deconstruction by anaerobic fungi. Nat. Microbiol. 8, 596–610. https://doi.org/10.1038/s41564-023-01336-8
Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R., Henrissat, B., Martínez, A.T., Otillar, R., Spatafora, J.W., Yadav, J.S., Coutinho, P.M., Vries, R.P. De, Ferreira, P., Findley, K., Foster, B., 2012. from 31 Fungal Genomes. Science (80-. ). 336, 1715–1719.
Hagadorn, J.W., 2002. Bear Gulch: An Exceptional Upper Carboniferous Plattenkalk. Unknown 167–184.
ペルム紀
Song, Huyue, Algeo, T.J., Song, Haijun, Tong, J., Wignall, P.B., Bond, D.P.G., Zheng, W., Chen, X., Romaniello, S.J., Wei, H., Anbar, A.D., 2023. Global oceanic anoxia linked with the Capitanian ( Middle Permian ) marine mass extinction. Earth Planet. Sci. Lett. 610, 118128. https://doi.org/10.1016/j.epsl.2023.118128
Bjerager, M., Alsen, P., Fyhn, K.M.B.W., Hovikoski, J., Keulen, N., Lindström, S., Therkelsen, J., Thomsen, T.B., 2023. Triassic in the northernmost Atlantic — ­ Linking North Greenland and the southwestern Barents Sea 1–10. https://doi.org/10.1111/ter.12649
三畳紀
Song, Haijun, Wignall, P.B., Chu, D., Tong, J., Sun, Y., Song, Huyue, He, W., Tian, L., 2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Sci. Rep. 4, 1–7. https://doi.org/10.1038/srep04132
Penn, J.L., Deutsch, C., Payne, J.L., Sperling, E.A., 2018. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science (80-. ). 362. https://doi.org/10.1126/science.aat1327
Yan, C., Wang, L., Jiang, H., Wignall, P.B., Sun, Y., Chen, Y., Lai, X., 2013. Uppermost permian to lower triassic conodonts at bianyang section, Guihzou Province, South China. Palaios 28, 509–522. https://doi.org/10.2110/palo.2012.p12-077r
Li, M., Tian, L., Wignall, P.B., Dai, X., Lin, W., Cai, Q., Song, H., 2023. Expansion of microbial-induced carbonate factory into deeper water after the Permian-Triassic mass extinction. Glob. Planet. Change 230, 104274. https://doi.org/10.1016/j.gloplacha.2023.104274
Wang, X., Algeo, T.J., Li, C., Zhu, M., 2023. Spatial pattern of marine oxygenation set by tectonic and ecological drivers over the Phanerozoic. Nat. Geosci. 16, 1020–1026. https://doi.org/10.1038/s41561-023-01296-y
GUI, S.-M., LIU, Y.-C., TIAN, L., 2023. Evolution of Insect Diversity in the Permian and Triassic. Palaeoentomology 6, 472–481. https://doi.org/10.11646/palaeoentomology.6.5.6
Tomimatsu, Y., Nozaki, T., Onoue, T., Matsumoto, H., Sato, H., Takaya, Y., Kimura, J.I., Chang, Q., Rigo, M., 2023. Pelagic responses to oceanic anoxia during the Carnian Pluvial Episode (Late Triassic) in Panthalassa Ocean. Sci. Rep. 13, 1–10. https://doi.org/10.1038/s41598-023-43525-9
Nakagawa, Y., Legrand, J., Bôle, M., Hori, R.S., Kuroda, J., Hasegawa, H., Ikeda, M., 2022. Terrestrial and marine organic matter evidence from a Cretaceous deep-sea chert of Japan: Implications for enhanced hydrological cycle during the Aptian OAE 1a. Glob. Planet. Change 215. https://doi.org/10.1016/j.gloplacha.2022.103886
Ikeda, M., Cho, T., Bôle, M., 2023. Did changes in terrigenous components of deep-sea cherts across the end-Triassic extinction relate to Central Atlantic magmatic province volcanism? Front. Earth Sci. 11, 1–10. https://doi.org/10.3389/feart.2023.1185241Newby, S.M., Owens, J.D., Schoepfer, S.D., Algeo, T.J., 2021. Transient ocean oxygenation at end-Permian mass extinction onset shown by thallium isotopes. Nat. Geosci. 14, 678–683. https://doi.org/10.1038/s41561-021-00802-4
Kelley, B.M., Yu, M., Lehrmann, D.J., Altıner, D., Payne, J.L., 2023. Prolonged and gradual recovery of metazoan-algal reefs following the end-Permian mass extinction. Geology 51, 1011–1016. https://doi.org/10.1130/G51058.1
Kaiho, K., Aftabuzzaman, M., Jones, D.S., Tian, L., 2021. Pulsed volcanic combustion events coincident with the end-Permian terrestrial disturbance and the following global crisis. Geology 49, 289–293. https://doi.org/10.1130/G48022.1
ジュラ紀
Lucas, S.G., Krainer, K., Tanner, L.H., Taylor, D.G., 2019. We need a new GSSP for the base of the Jurassic System. Vol. Jurassica 17, 117–120.
Ruhl, M., Hesselbo, S.P., Al-Suwaidi, A., Jenkyns, H.C., Damborenea, S.E., Manceñido, M.O., Storm, M., Mather, T.A., Riccardi, A.C., 2020. On the onset of Central Atlantic Magmatic Province (CAMP) volcanism and environmental and carbon-cycle change at the Triassic–Jurassic transition (Neuquén Basin, Argentina). Earth-Science Rev. 208, 103229. https://doi.org/10.1016/j.earscirev.2020.103229
Korte, C., Ruhl, M., Pálfy, J., Ullmann, C.V., Hesselbo, S.P., 2018. Chemostratigraphy Across the Triassic–Jurassic Boundary. Geophys. Monogr. Ser. 240, 185–210. https://doi.org/10.1002/9781119382508.ch10
Wu, F., Janvier, P., Zhang, C., 2023. The rise of predation in Jurassic lampreys. Nat. Commun. 14. https://doi.org/10.1038/s41467-023-42251-0
Gai, Z., Donoghue, P.C.J., 2023. Inside the head of an ancient vertebrate. Nature 621, 10–12.
Carney, R.M., Vinther, J., Shawkey, M.D., D’Alba, L., Ackermann, J., 2012. New evidence on the colour and nature of the isolated Archaeopteryx feather. Nat. Commun. 3, 1–6. https://doi.org/10.1038/ncomms1642
Stanley, S.M., 2009. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. Proc. Natl. Acad. Sci. U. S. A. 106, 15264–15267. https://doi.org/10.1073/pnas.0907992106
白亜紀
Tajika, A., Nishida, K., Ishimura, T., Klug, C., 2023. Selective extinction of cephalopods at the K-Pg mass extinction event Selective extinction of cephalopods at the K-Pg mass extinction event 5–6.
Tajika, A., Landman, N.H., Cochran, J.K., Nishida, K., Shirai, K., Ishimura, T., Murakami-Sugihara, N., Sato, K., 2023. Ammonoid extinction versus nautiloid survival: Is metabolism responsible? Geology 51, 621–625. https://doi.org/10.1130/G51116.1
During, M.A.D., Smit, J., Voeten, D.F.A.E., Berruyer, C., Tafforeau, P., Sanchez, S., Stein, K.H.W., Verdegaal-Warmerdam, S.J.A., van der Lubbe, J.H.J.L., 2022. The Mesozoic terminated in boreal spring. Nature 603, 91–94. https://doi.org/10.1038/s41586-022-04446-1
まゆつば:DePalma, R.A., Oleinik, A.A., Gurche, L.P., Burnham, D.A., Klingler, J.J., McKinney, C.J., Cichocki, F.P., Larson, P.L., Egerton, V.M., Wogelius, R.A., Edwards, N.P., Bergmann, U., Manning, P.L., 2021. Seasonal calibration of the end-cretaceous Chicxulub impact event. Sci. Rep. 11, 1–9. https://doi.org/10.1038/s41598-021-03232-9
Matsumoto, H., Coccioni, R., Frontalini, F., Shirai, K., Jovane, L., Trindade, R., Savian, J.F., Kuroda, J., 2022. Mid-Cretaceous marine Os isotope evidence for heterogeneous cause of oceanic anoxic events. Nat. Commun. 13. https://doi.org/10.1038/s41467-021-27817-0
新生代
Bosson, J.B., Huss, M., Cauvy-Fraunié, S., Clément, J.C., Costes, G., Fischer, M., Poulenard, J., Arthaud, F., 2023. Future emergence of new ecosystems caused by glacial retreat. Nature 620, 562–569. https://doi.org/10.1038/s41586-023-06302-2
でっかいクジラ化石:Antar, M.S., Gohar, A.S., El-Desouky, H., Seiffert, E.R., El-Sayed, S., Claxton, A.G., Sallam, H.M., 2023. A diminutive new basilosaurid whale reveals the trajectory of the cetacean life histories during the Eocene. Commun. Biol. 6, 1–12. https://doi.org/10.1038/s42003-023-04986-w
チバニアンSuganuma, Y., Okada, M., Head, M.J., Kameo, K., Haneda, Y., Hayashi, H., Irizuki, T., Itaki, T., Izumi, K., Kubota, Y., Nakazato, H., Nishida, N., Okuda, M., Satoguchi, Y., Simon, Q., Takeshita, Y., 2021. Formal ratification of the global boundary stratotype section and point (GSSP) for the Chibanian stage and middle pleistocene subseries of the quaternary system: The Chiba section, Japan. Episodes 44, 317–347. https://doi.org/10.18814/epiiugs/2020/020080
3.紀伊半島巡検に備える
Yabuta, S., Takeuchi, M., Saito, M., 2021. Conglomerate in the Kuroze Formation of the Miocene Shidara Group, eastern Aichi Prefecture, central Japan: J. Geol. Soc. Japan 127, 689–700. https://doi.org/10.5575/geosoc.2021.0029
azushige Sogawa, and M.D.P., 1970. NII-Electronic Library Service. Chem. Pharm. Bull. 2091.
Sato, T., Nakajo, T., Wada, Y., Suzuki-Kamata, K., 2012. The Miocene Muro ignimbrite. J. Geol. Soc. Japan 118, S53–S69. https://doi.org/10.5575/geosoc.2012.0039
Ota, A., Takeuchi, M., Bayart, N., Yamamoto, K., 2019. Detrital zircon U-Pb ages from the Cretaceous accretionary complexes in the Takaharagawa area, central Kii Peninsula. J. Geol. Soc. Japan 125, 329–347. https://doi.org/10.5575/geosoc.2019.0002
NUE46_2_1-15.pdf, n.d.
Shimura, Y., Takeuchi, M., Tokiwa, T., 2020. Geological traverse across the Shimanto and Sanbagawa belts on the central Kii Peninsula, SW Japan. J. Geol. Soc. Japan 126, 383–399. https://doi.org/10.5575/geosoc.2020.0019
Isozaki, Y., Hasegawa, R., Masuda, H., Tsutsumi, Y., 2020. Finding Paleogene beds in the uppermost Izumi Group in western Kii Peninsula, SW Japan. J. Geol. Soc. Japan 126, 639–644. https://doi.org/10.5575/geosoc.2020.0036
Jia, S., Takeuchi, M., 2020. Sedimentary history and provenance analysis of the Sanbagawa Belt in eastern Kii Peninsula, Southwest Japan, based on detrital zircon U–Pb ages. J. Asian Earth Sci. 196, 104342. https://doi.org/10.1016/j.jseaes.2020.104342
Shigematsu, N., Kametaka, M., Inada, N., Miyawaki, M., Miyakawa, A., Kameda, J., Togo, T., Fujimoto, K., 2017. Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation. Tectonophysics 696–697, 52–69. https://doi.org/10.1016/j.tecto.2016.12.017
Nadmid, B., Tsukada, K., Takeuchi, M., 2021. Geochemistry of the basaltic blocks in the Jurassic and Cretaceous accretionary complexes in the Yoshino area, central Kii Peninsula, Southwest Japan. Nagoya Univ. Museum No 36, 35–51. https://doi.org/10.18999/bulnum.036.03
Royer, C., Thébault, J., Chauvaud, L., Olivier, F., 2013. Structural analysis and paleoenvironmental potential of dog cockle shells (Glycymeris glycymeris) in Brittany, northwest France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 373, 123–132. https://doi.org/10.1016/j.palaeo.2012.01.033
Ryan, D.R., Witts, J.D., Landman, N.H., 2021. Palaeoecological analysis of a methane seep deposit from the Upper Cretaceous (Maastrichtian) of the U.S. Western Interior. Lethaia 54, 185–203. https://doi.org/10.1111/let.12396
4.卒論その1 Mid-Miocene Optimum
Holbourn, A., Kuhnt, W., Kochhann, K., Andersen, N., MAtsuzaki, K.M., 2022. Keys for understanding future trends on a warmer Earth ? Geol. Soc. Am. Spec. Pap. 2556, 1–20.
Kamikuri, S., 2019. Middle to late Miocene radiolarians from ODP Site 1021 in the eastern North Pacific. Bull. Geol. Surv. Japan 70, 163–194. https://doi.org/10.9795/bullgsj.70.163
Irizuki, T., Yanagisawa, Y., Kimura, M., Kato, K., Hoshi, H., Hayashi, H., Fujiwara, Y., Akai, K., 2021. Biostratigraphy and correlation of the Lower to Middle Miocene in the Setouchi Geologic Province of the Kinki District, Southwest Japan. J. Geol. Soc. Japan 127, 415–429. https://doi.org/10.5575/geosoc.2021.0002
Methner, K., Campani, M., Fiebig, J., Löffler, N., Kempf, O., Mulch, A., 2020. Middle Miocene long-term continental temperature change in and out of pace with marine climate records. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-64743-5
You, Y., Huber, M., Müller, R.D., Poulsen, J., Ribbe, J., 2009. Simulation of the middle miocene climate optimum. Geophys. Res. Lett. 36. https://doi.org/10.1029/2008GL036571
MIS10-04 環モデルを用いた検証 The middle Miocene Climatic Optimum triggered by magmatic activity : insights from osmium isotopes and a carbon cycle model, 2018. 2018.
Goto, K.T., Tejada, M.L.G., Tajika, E., Suzuki, K., 2023. Enhanced magmatism played a dominant role in triggering the Miocene Climatic Optimum. Commun. Earth Environ. 4, 1–8. https://doi.org/10.1038/s43247-023-00684-x
Brlek, M., Gaynor, S.P., Mongelli, G., Bauluz, B., Sinisi, R., Brčić, V., Peytcheva, I., Mišur, I., Tapster, S., Trinajstić, N., Laita, E., Yuste, A., Šuica, S., Grizelj, A., Kukoč, D., Schaltegger, U., 2021. Karst bauxite formation during Miocene Climatic Optimum (central Dalmatia, Croatia): mineralogical, compositional and geochronological perspectives. Int. J. Earth Sci. 110, 2899–2922. https://doi.org/10.1007/s00531-021-02091-z
Sosdian, S.M., Babila, T.L., Greenop, R., Foster, G.L., Lear, C.H., 2020. Ocean Carbon Storage across the middle Miocene: a new interpretation for the Monterey Event. Nat. Commun. 11, 1–11. https://doi.org/10.1038/s41467-019-13792-0
Geologic Time Scale 2020, 2020. , Geologic Time Scale 2020. Elsevier. https://doi.org/10.1016/C2020-1-02369-3
5. 卒論その2 前期三畳紀
Feng, Q., He, W., Gu, S., Meng, Y., Jin, Y., Zhang, F., 2007. Radiolarian evolution during the latest Permian in South China. Glob. Planet. Change 55, 177–192. https://doi.org/10.1016/j.gloplacha.2006.06.012
Wu, K., Zou, Y., Li, H., Wan, S., Yang, L., Cui, Y., Li, J., Zhao, B., Cheng, L., 2023. A unique early Triassic (Spathian) conodont community from the Nanzhang-Yuan’an Fauna, Hubei Province, South China. Geol. J. 58, 3879–3898. https://doi.org/10.1002/gj.4815
HE, W., FENG, Q., GU, S., JIN, Y., 2005. Changxingian (Upper Permian) Radiolarian Fauna From Meishan D Section, Changxing, Zhejiang, China, and Its Possible Paleoecological Significance. J. Paleontol. 79, 209–218. https://doi.org/10.1666/0022-3360(2005)079<0209:cuprff>2.0.co;2
Agematsu-Watanabe, S., Kamata, Y., 2018. Recent progress in Paleozoic-Mesozoic microfossil research in deep-sea sediments of Japanese accretionary complexes: J. Geol. Soc. Japan 124, 951–965. https://doi.org/10.5575/geosoc.2018.0068
HE, W., FENG, Q., GU, S., JIN, Y., 2005. Changxingian (Upper Permian) Radiolarian Fauna From Meishan D Section, Changxing, Zhejiang, China, and Its Possible Paleoecological Significance. J. Paleontol. 79, 209–218. https://doi.org/10.1666/0022-3360(2005)079<0209:cuprff>2.0.co;2
148777340.pdf, n.d.
武内章記, 柴田康行, 田中敦, 2009. 水銀同位体生物地球化学. 環境化学 19, 1–11.
Sun, R., Liu, Y., Sonke, J.E., Feifei, Z., Zhao, Y., Zhang, Y., Chen, J., Liu, C.Q., Shen, S., Anbar, A.D., Zheng, W., 2023. Mercury isotope evidence for marine photic zone euxinia across the end-Permian mass extinction. Commun. Earth Environ. 4, 1–11. https://doi.org/10.1038/s43247-023-00821-6
Zao, M., City, T., Tanaka, T., 2009. Late Triassic conodont from a limestone in the Nothern Chichibu belt 9–13.
Suzuki, K., Yamakita, S., Niwa, K., Tsukada, K., Tanaka, T., 2009. Late Triassic conodonts from ‘Ishimaki-yama limestone’’ in the Northern Chichibu belt, Toyohashi City, central Japan’ 1–7.
Wakita, K., 1999. 美濃帯のメランジュ. 地質学論集 55, 145–163.
Nakae, S., 1993. デコルマ面としての遠洋性珪質岩中のp-T境界 ー丹波帯のジュラ紀付加作用に関してー.
Sugiyama, K., 1997. Triassic and Lower Jurassic radiolarian biostratigraphy in the siliceous claystone and bedded chert units of the southeastern Mino Terrane, Central Japan, Bulletin of the Mizunami Fossil Museum.
161–175. https://doi.org/10.2517/2016PR007
Metcalfe, l., 1990. Triassic conodont biostratigraphy in the Malay Peninsula. Bull. Geol. Soc. Malaysia 26, 133–145. https://doi.org/10.7186/bgsm26199011
Koike, T., 2016. Multielement conodont apparatuses of the ellisonidae from Japan. Paleontol. Res. 20,
Lintern, D.G., Hill, P.R., Stacey, C., 2016. Ichnofabric of Sandstones Deposited in High-Energy Nearshore Environments : Measurement and Utilization Published by : SEPM Society for Sedimentary Geology Stable URL : http://www.jstor.org/stable/3514750 REFERENCES Linked references are available on JSTO. Sedimentology 63, 1041–1064.
Xiao, Y., Suzuki, N., Ito, T., He, W., 2021. New Permian radiolarians from east Asia and the quantitative reconstruction of their evolutionary and ecological significances. Sci. Rep. 11, 1–13. https://doi.org/10.1038/s41598-021-86262-7
Pratt, C.A., 2023. Conodont Sequence Biostratigraphy of the Upper Honaker Trail Formation.
Harazim, D., Virtasalo, J.J., Denommee, K.C., Thiemeyer, N., Lahaye, Y., Whitehouse, M.J., 2020. Exceptional sulfur and iron isotope enrichment in millimetre-sized, early Palaeozoic animal burrows. Sci. Rep. 10, 1–13. https://doi.org/10.1038/s41598-020-76296-8
6.自分の研究 酸化還元環境の勉強
Future, E.M.B., Brief, S., 2023. Ocean Oxygen : the Role of the Ocean in the Oxygen We Breathe and the Threat of. https://doi.org/10.5281/zenodo.7941157
Chakraborty, A., Ghosh, A.K., Dey, R., Saxena, S., Mazumder, A., 2019. Record of the Miocene Climate Optimum in the northeast Indian Ocean: evidence from the microfossils. Palaeobiodiversity and Palaeoenvironments 99, 159–175. https://doi.org/10.1007/s12549-018-0342-3
Xiong, Y., Guilbaud, R., Peacock, C.L., Krom, M.D., Poulton, S.W., 2023. Phosphorus controls on the formation of vivianite versus green rust under anoxic conditions. Geochim. Cosmochim. Acta 351, 139–151. https://doi.org/10.1016/j.gca.2023.04.032
Kuwahara, Y., Fujinaga, K., Nozaki, T., Ohta, J., Yano, M., Yasukawa, K., Nakamura, K., Kato, Y., 2022. Iron deposition during recovery from Late Devonian oceanic anoxia: Implications of the geochemistry of the Kawame ferromanganese deposit, Nedamo Belt, Northeast Japan. Glob. Planet. Change 216, 103920. https://doi.org/10.1016/j.gloplacha.2022.103920
Toner, B.M., 2023. Improved theory of ocean iron cycle resolves modelling issues. Nature 620, 41–42. https://doi.org/10.1038/d41586-023-02406-x
Krause, A.J., Sluijs, A., van der Ploeg, R., Lenton, T.M., Pogge von Strandmann, P.A.E., 2023. Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum. Nat. Geosci. 16, 730–738. https://doi.org/10.1038/s41561-023-01234-y
Li, S., Wignall, P.B., Xiong, Y., Poulton, S.W., 2023. Calibration of redox thresholds in black shale: Insight from a stratified Mississippian basin with warm saline bottom waters. Geol. Soc. Am. Bull. 1–21. https://doi.org/10.1130/b36915.1
Li, H., Wignall, P.B., Jiang, H., Zhang, M., Wu, X., Lai, X., 2023. Earth-Science Reviews A review of carbon isotope excursions , redox changes and marine red beds of the Early Triassic with insights from the Qinling Sea , northwest China. Earth-Science Rev. 247, 104623. https://doi.org/10.1016/j.earscirev.2023.104623
Zheng, Y., Anderson, R.F., Van Geen, A., Fleisher, M.Q., 2002. Remobilization of authigenic uranium in marine sediments by bioturbation. Geochim. Cosmochim. Acta 66, 1759–1772. https://doi.org/10.1016/s0016-7037(01)00886-9
Hess, A. V., Auderset, A., Rosenthal, Y., Miller, K.G., Zhou, X., Sigman, D.M., Martínez-García, A., 2023. A well-oxygenated eastern tropical Pacific during the warm Miocene. Nature 619, 521–525. https://doi.org/10.1038/s41586-023-06104-6
Vecchi, G.A., Soden, B.J., Wittenberg, A.T., Held, I.M., Leetmaa, A., Harrison, M.J., 2006. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76. https://doi.org/10.1038/nature04744
Pasquier, V., Fike, D.A., Révillon, S., Halevy, I., 2022. A global reassessment of the controls on iron speciation in modern sediments and sedimentary rocks: A dominant role for diagenesis. Geochim. Cosmochim. Acta 335, 211–230. https://doi.org/10.1016/j.gca.2022.08.037

Wang, X., Algeo, T.J., Liu, W., Xu, Z., 2023. Jo ur na l P re. Earth-Science Rev. 104420. https://doi.org/10.1016/j.earscirev.2023.104420
Li, S., Wignall, P.B., Xiong, Y., Poulton, S.W., 2023. Calibration of redox thresholds in black shale: Insight from a stratified Mississippian basin with warm saline bottom waters. Geol. Soc. Am. Bull.
Pasquier, V., Fike, D.A., Halevy, I., 2021. Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone. Nat. Commun. 12. https://doi.org/10.1038/s41467-021-24753-x

Alcott, L.J., Krause, A.J., Hammarlund, E.U., Bjerrum, C.J., Scholz, F., Xiong, Y., Hobson, A.J., Neve, L., Mills, B.J.W., März, C., Schnetger, B., Bekker, A., Poulton, S.W., 2020. Development of Iron Speciation Reference Materials for Palaeoredox Analysis. Geostand. Geoanalytical Res. 44, 581–591. https://doi.org/10.1111/ggr.12342

Slack, J.F., McAleer, R.J., Shanks, W.C., Dumoulin, J.A., 2021. Diagenetic Barite-Pyrite-Wurtzite Formation and Redox Signatures in Triassic Mudstone, Brooks Range, Northern Alaska. Chem. Geol. 585, 120568. https://doi.org/10.1016/j.chemgeo.2021.120568
Pucéat, E., Joachimski, M.M., Bouilloux, A., Monna, F., Bonin, A., Motreuil, S., Morinière, P., Hénard, S., Mourin, J., Dera, G., Quesne, D., 2010. Revised phosphate – water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth Planet. Sci. Lett. 298, 135–142. https://doi.org/10.1016/j.epsl.2010.07.034
Knies, J., Schönenberger, J., Zwingmann, H., Lelij, R. Van Der, Smelror, M., Vullum, P.E., Brönner, M., Vogt, C., Fredin, O., Müller, A., Grasby, S.E., Beauchamp, B., Viola, G., 2022. Continental weathering and recovery from ocean nutrient stress during the Early Triassic Biotic Crisis 1–12. https://doi.org/10.1038/s43247-022-00480-z
Wignall, P.B., Bond, D.P.G., Sun, Y., Grasby, S.E., Beauchamp, B., Joachimski, M.M., Blomeier, D.P.G., 2016. Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation. Geol. Mag. 153, 316–331. https://doi.org/10.1017/S0016756815000588
Wignall, P.B., Bond, D.P.G., Grasby, S.E., Pruss, S.B., Peakall, J., 2020. Controls on the formation of microbially induced sedimentary structures and biotic recovery in the Lower Triassic of Arctic Canada. Bull. Geol. Soc. Am. 132, 918–930. https://doi.org/10.1130/B35229.1
7.P-Tr境界の研究進捗レビュー
Xu, G., Shen, J., Algeo, T.J., Yu, J., Feng, Q., Frank, T.D., Fielding, C.R., Yan, J., Deconink, J.F., Lei, Y., 2023. Limited change in silicate chemical weathering intensity during the Permian–Triassic transition indicates ineffective climate regulation by weathering feedbacks. Earth Planet. Sci. Lett. 616. https://doi.org/10.1016/j.epsl.2023.118235
Wu, Q., Zhang, H., Ramezani, J., 2024. The terrestrial end- ­ Permian mass extinction in the paleotropics postdates the marine extinction 7284. https://doi.org/10.1126/sciadv.adi7284
Li, M., Tian, L., Wignall, P.B., Dai, X., Lin, W., Cai, Q., Song, H., 2023. Expansion of microbial-induced carbonate factory into deeper water after the Permian-Triassic mass extinction. Glob. Planet. Change 230, 104274. https://doi.org/10.1016/j.gloplacha.2023.104274
Liu, C., Ding, J., Sun, W., Luan, X., Sun, S., Yang, Y., Feng, M., Jiang, T., Li, J., 2023. Episodic magmatism at the Permian/Triassic crisis boundary and its linkage to underlying source rocks: constraints from conodont-based high-resolution geochemical proxies in marine carbonate successions, South China. Int. J. Earth Sci. https://doi.org/10.1007/s00531-023-02357-8
Woods, A.D., Zonneveld, J.P., Wakefield, R., 2023. Hyperthermal-driven anoxia and reduced productivity in the aftermath of the Permian-Triassic mass extinction: a case study from Western Canada. Front. Earth Sci. 11, 1–15. https://doi.org/10.3389/feart.2023.1323413
Müller, J., Sun, Y., Yang, F., Fantasia, A., Joachimski, M., 2022. Phosphorus Cycle and Primary Productivity Changes in the Tethys Ocean During the Permian-Triassic Transition: Starving Marine Ecosystems. Front. Earth Sci. 10. https://doi.org/10.3389/feart.2022.832308
Shi, W.H.G.R., Chu, J.Y.D., Jiang, K.Z.H., Xiao, T.Y.Y., n.d. Stratigraphy Around the Permian – Triassic Boundary of South China.
Song, H., Scotese, C.R., 2023. The end-Paleozoic great warming. Sci. Bull. 68, 2523–2526. https://doi.org/10.1016/j.scib.2023.09.009
Sun, R., Liu, Y., Sonke, J.E., Feifei, Z., Zhao, Y., Zhang, Y., Chen, J., Liu, C.Q., Shen, S., Anbar, A.D., Zheng, W., 2023. Mercury isotope evidence for marine photic zone euxinia across the end-Permian mass extinction. Commun. Earth Environ. 4, 1–12. https://doi.org/10.1038/s43247-023-00821-6
Dai, X., Davies, J.H.F.L., Yuan, Z., Brayard, A., Ovtcharova, M., Xu, G., Liu, X., Smith, C.P.A., Schweitzer, C.E., Li, M., Perrot, M.G., Jiang, S., Miao, L., Cao, Y., Yan, J., Bai, R., Wang, F., Guo, W., Song, Huyue, Tian, L., Corso, J.D., Liu, Y., Chu, D., Song, Haijun, 2023. A Mesozoic fossil lagerstätte from 250.8 million years ago shows a modern-type marine ecosystem. Science (80-. ). 379, 567–572. https://doi.org/10.1126/science.adf1622
Li, R., Wu, N., Shen, S., Wang, X., Chen, H., Algeo, T.J., Zhang, H., Zhang, F., 2023. A rapid onset of ocean acidification associated with the end-Permian mass extinction. Glob. Planet. Change 225, 104130. https://doi.org/10.1016/j.gloplacha.2023.104130
Saito, R., Kaiho, K., Tian, L., Takahashi, S., 2023. Frequent high-temperature volcanic combustion events delayed biotic recovery after the end-Permian mass extinction. Earth Planet. Sci. Lett. 614, 118194. https://doi.org/10.1016/j.epsl.2023.118194
Tang, W., Wang, J., Wei, H., Fu, X., Ke, P., 2023. Journal of Asian Earth Sciences Sulfur isotopic evidence for global marine anoxia and low seawater sulfate concentration during the Late Triassic. J. Asian Earth Sci. 251, 105659. https://doi.org/10.1016/j.jseaes.2023.105659
8.学部生セミナー 火星の地質レビュー
Postberg, F., Sekine, Y., Klenner, F., Glein, C.R., Zou, Z., Abel, B., Furuya, K., Hillier, J.K., Khawaja, N., Kempf, S., Noelle, L., Saito, T., Schmidt, J., Shibuya, T., Srama, R., Tan, S., 2023. Detection of phosphates originating from Enceladus’s ocean. Nature 618, 489–493. https://doi.org/10.1038/s41586-023-05987-9
Moser, D.E., Arcuri, G.A., Reinhard, D.A., White, L.F., Darling, J.R., Barker, I.R., Larson, D.J., Irving, A.J., McCubbin, F.M., Tait, K.T., Roszjar, J., Wittmann, A., Davis, C., 2019. Decline of giant impacts on Mars by 4.48 billion years ago and an early opportunity for habitability. Nat. Geosci. 12, 522–527. https://doi.org/10.1038/s41561-019-0380-0
Grady, M.M., 2020. Exploring Mars with Returned Samples. Space Sci. Rev. 216. https://doi.org/10.1007/s11214-020-00676-9
Peter, J.S., Nordheim, T.A., Hand, K.P., 2023. Detection of HCN and diverse redox chemistry in the plume of Enceladus. Nat. Astron. https://doi.org/10.1038/s41550-023-02160-0
Liu, J., Michalski, J.R., Zhou, M.F., 2021. Intense subaerial weathering of eolian sediments in Gale crater, Mars. Sci. Adv. 7. https://doi.org/10.1126/sciadv.abh2687
Liu, J., Michalski, J.R., Zhou, M.F., 2021. Intense subaerial weathering of eolian sediments in Gale crater, Mars. Sci. Adv. 7. https://doi.org/10.1126/sciadv.abh2687
Cheng, H., Li, H., Sha, L., Sinha, A., Shi, Z., Yin, Q., Lu, Z., Zhao, D., Cai, Y., Hu, Y., Hao, Q., Tian, J., Kathayat, G., Dong, X., Zhao, J., Zhang, H., 2022. Milankovitch theory and monsoon. Innovation 3, 100338. https://doi.org/10.1016/j.xinn.2022.100338
Ueda, H., Kimura, S., Saito, T., Takano, Y., Iizuka, N., Orihashi, Y., 2018. Material recycling in a sediment-starved trench recorded in the Early Cretaceous Shiriya accretionary complex, Northeast Japan. Isl. Arc 27, 1–20. https://doi.org/10.1111/iar.12272
9.Dr.学生の研究 白亜紀 勉強
Shimamoto, M., 1986. Shell microstructure of the Veneridae ( Bivalvia) and its phylogenetic implications. Sci. Reports - Tohoku Univ. Second Ser. Geol.
ǙƺȆ, 2016. Studies on paleoenvironment and carbon cycles using long-lived bivalve shells collected from Funakoshi Bay , Iwate prefecture Bivalve shell is one of the most important archives of past environmental changes because some species can live more than several 135–140.
Herman, A.B., Spicer, R.A., 1996. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nat. 1996 3806572 380, 330–333. https://doi.org/10.1038/380330a0
Walliser, E.O., Schöne, B.R., Tütken, T., Zirkel, J., Grimm, K.I., Pross, J., 2015. The bivalve Glycymeris planicostalis as a high-resolution paleoclimate archive for the Rupelian (Early Oligocene) of central Europe. Clim. Past 11, 653–668. https://doi.org/10.5194/cp-11-653-2015
Kitamura, A., Yamamoto, N., Kobayashi, K., 2012. Growth of the Submarine Cave-dwelling Micro-bivalve Carditella iejimensis. Venus (Japanese J. Malacol. 70, 41–45.
de Winter, N.J., Müller, I.A., Kocken, I.J., Thibault, N., Ullmann, C. V., Farnsworth, A., Lunt, D.J., Claeys, P., Ziegler, M., 2021. Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate. Commun. Earth Environ. 2021 21 2, 1–8. https://doi.org/10.1038/s43247-021-00193-9
Evans, J.W., 1972. Tidal Growth Increments in the Cockle Clinocardium nuttalli. Science (80-. ). 176, 416–417. https://doi.org/10.1126/SCIENCE.176.4033.416
Hallmann, N., Burchell, M., Schöne, B.R., Irvine, G. V., Maxwell, D., 2009. High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: techniques for revealing environmental archives and archaeological seasonality. J. Archaeol. Sci. 36, 2353–2364. https://doi.org/10.1016/J.JAS.2009.06.018
Herman, A.B., Kostyleva, V. V., Nikolskii, P.A., Basilyan, A.E., Kotel’nikov, A.E., 2019. New Data on the Late Cretaceous Flora of the New Siberia Island, New Siberian Islands. Stratigr. Geol. Correl. 27, 323–338. https://doi.org/10.1134/S0869593819030031/FIGURES/7
Schöne, B.R., Tanabe, K., Dettman, D.L., SATO, S., 2003. Environmental controls on shell growth rates and d 18 O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar. Biol. 142, 473–485. https://doi.org/10.1007/s00227-002-0970-y
Matsumoto, T., 1951. The Yezo Group and the Kwanmon Group. J. Geol. Soc. Japan 57, 95–98. https://doi.org/10.5575/GEOSOC.57.95
Richardson, C.A., 1988. Tidally produced growth bands in the subtidal bivalve Spisula subtruncata (Da Costa). J. Molluscan Stud. 54, 71–82. https://doi.org/10.1093/MOLLUS/54.1.71
Reza Mirzaei, M., Yasin, Z., Shau Hwai, A.T., 2014. Periodicity and shell microgrowth pattern formation in intertidal and subtidal areas using shell cross sections of the blood cockle, Anadara granosa. Egypt. J. Aquat. Res. 40, 459–468. https://doi.org/10.1016/J.EJAR.2014.11.008
Herman, A.B., Spicer, R.A., 2010. Mid-Cretaceous floras and climate of the Russian high Arctic (Novosibirsk Islands, Northern Yakutiya). Palaeogeogr. Palaeoclimatol. Palaeoecol. 295, 409–422. https://doi.org/10.1016/J.PALAEO.2010.02.034
Shimizu, I., Tanaka, K., Imai, I., 1955. Explainatory text of the geological map of Japan, Scale 1:50000, Kami-Ashibetsu.
Yamanashi, J., Takayanagi, H., Isaji, A., Asami, R., Iryu, Y., 2016. Carbon and Oxygen Isotope Records from Tridacna derasa Shells: Toward Establishing a Reliable Proxy for Sea Surface Environments. PLoS One 11, e0157659. https://doi.org/10.1371/JOURNAL.PONE.0157659
de Winter, N.J., Goderis, S., Dehairs, F., Jagt, J.W.M., Fraaije, R.H.B., Van Malderen, S.J.M., Vanhaecke, F., Claeys, P., 2017. Tropical seasonality in the late Campanian (late Cretaceous): Comparison between multiproxy records from three bivalve taxa from Oman. Palaeogeogr. Palaeoclimatol. Palaeoecol. 485, 740–760. https://doi.org/10.1016/j.palaeo.2017.07.031
Huber, B.T., Norris, R.D., Ivjacleod, K.G., 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30, 123–126.
Yabe, H., 1926. A New Scheme of the Stratigraphical Subdivision of the Cretaceous Deposits of Hokkaidô. Proc. Imp. Acad. 2, 214–218. https://doi.org/10.2183/PJAB1912.2.214
Thébault, J., Chauvaud, L., Clavier, J., Guarini, J., Dunbar, R.B., Fichez, R., Mucciarone, D.A., Morize, E., 2007. Reconstruction of seasonal temperature variability in the tropical Pacific Ocean from the shell of the scallop, Comptopallium radula. Geochim. Cosmochim. Acta 71, 918–928. https://doi.org/10.1016/J.GCA.2006.10.017
Hasegawa, H., Tada, R., Jiang, X., Suganuma, Y., Imsamut, S., Charusiri, P., Ichinnorov, N., Khand, Y., 2012. Drastic shrinking of the Hadley circulation during the mid-Cretaceous Supergreenhouse. Clim. Past 8, 1323–1337. https://doi.org/10.5194/cp-8-1323-2012
Jones, D.S., 1983. Sclerochronology: Reading the Record of the Molluscan Shell: Annual growth increments in the shells of bivalve molluscs record marine climatic changes and reveal surprising longevity. Am. Sci. 71, 384–391.
Hay, W.W., 2008. Evolving ideas about the Cretaceous climate and ocean circulation. Cretac. Res. 29, 725–753. https://doi.org/10.1016/J.CRETRES.2008.05.025
Dettman, D.L., Reische, A.K., Lohmann, K.C., 1999. Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (unionidae). Geochim. Cosmochim. Acta 63, 1049–1057. https://doi.org/10.1016/S0016-7037(99)00020-4
Reyes-Fox, M., Steltzer, H., Trlica, M.J., McMaster, G.S., Andales, A.A., Lecain, D.R., Morgan, J.A., 2014. Elevated CO2 further lengthens growing season under warming conditions. Nat. 2014 5107504 510, 259–262. https://doi.org/10.1038/nature13207
Hoşgör, İ., Yılmaz, İ.., 2019. Paleogeographic northeastern limits of Aphrodina dutrugei (Cocquand, 1862)(Heterodonta, Bivalvia) from the Cenomanian of the Arabian Platform. Riv. It. Paleontol. Strat. 125, 421–431. https://doi.org/10.13130/2039-4942/11773
Schmitt, K.E., Huck, S., Krummacker, M., De Winter, N.J., Godet, A., Claeys, P., Heimhofer, U., 2022. Radiolitid rudists: an underestimated archive for Cretaceous climate reconstruction? Lethaia 55, 1–21. https://doi.org/10.18261/let.55.4.4
Moriya, K., 2011. Development of the Cretaceous Greenhouse Climate and the Oceanic Thermal Structure. Paleontol. Res. 15, 77–88. https://doi.org/10.2517/1342-8144-15.2.077
Suzuki, S., Togo, Y., Hikida, Y., 1998. Preliminary Report on the Preservation of Some Molluscan Fossils from Nakagawa-cho, Hokkaido, Japa. Bull. Nakagawa Museum Nat. Hist. 1, 81–94.
Shackleton, N.J., Kennett, J.P., 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279 and 281. Rep Deep Sea Drill Pr 29, 743–755.
Ara, H.I.H., Akamura, D.A.N., Allis, S.I.W., 2014. Research Article A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width 33–50. https://doi.org/10.1111/iar.12057
Knoll, K., Landman, N.H., Cochran, J.K., MacLeod, K.G., Sessa, J.A., 2016. Microstructural preservation and the effects of diagenesis on the carbon and oxygen isotope composition of late Cretaceous aragonitic mollusks from the Gulf Coastal Plain and the Western Interior Seaway. Am. J. Sci. 316, 591–613. https://doi.org/10.2475/07.2016.01
Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., 1953. Revised carbonate-water isotopic temperature scale. Bull. Geol. Soc. Am. 54, 1315–1326. https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2
Dunca, E., Mutvei, H., Göransson, P., Mörth, C.M., Schöne, B.R., Whitehouse, M.J., Elfman, M., Baden, S.P., 2009. Using ocean quahog (Arctica islandica) shells to reconstruct palaeoenvironment in Öresund, Kattegat and Skagerrak, Sweden. Int. J. Earth Sci. 98, 3–17. https://doi.org/10.1007/s00531-008-0348-6
Ohno, T., 1989. Variable rhythms of Micro-growth Striation Formation in Bivalve Shells (Review). Benthos Res. 37, 35–48. https://doi.org/10.5179/BENTHOS1981.1989.37_35
Schöne, B.R., Giere, O., 2005. Growth increments and stable isotope variation in shells of the deep-sea hydrothermal vent bivalve mollusk Bathymodiolus brevior from the North Fiji Basin, Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 52, 1896–1910. https://doi.org/10.1016/J.DSR.2005.06.003
Tamaki, M., Itoh, Y., 2008. Tectonic implications of paleomagnetic data from upper Cretaceous sediments in the Oyubari area, central Hokkaido, Japan. Isl. Arc 17, 270–284. https://doi.org/10.1111/J.1440-1738.2008.00617.X
Taylor, J.D., Kennedy, W.J., Hall, A., 1969. The Shell Structure and Mineralogy of the Bivalvia. I. Introduction. Nuculacea-Trigonacea. Bull. Br. Museum (Natural Hist. Zool. supplement, 1–125.
Walliser, E.O., Schöne, B.R., 2020. Paleoceanography of the Late Cretaceous northwestern Tethys Ocean: Seasonal upwelling or steady thermocline? PLoS One 15, e0238040. https://doi.org/10.1371/JOURNAL.PONE.0238040
Okai, T., Suzuki, A., Terashima, S., Inoue, M., Nohara, M., Kawahata, H., Imai, N., 2004. Collaborative analysis of GSJ/AIST geochemieal reference materials JCp-1 (Coral)and JCt-1 (Giant Clam). Chikyukagaku (Geochemistry) 38, 281–286. https://doi.org/10.14934/CHIKYUKAGAKU.38.281
Ivany, L.C., 2012. Reconstructing paleoseasonality from accretionary skeletal carbonates—challenges and opportunities, in: L. C. Ivany and B. T. Huber, Eds. Reconstructing Earth’s Deep- Time Climate—the State of the Art in 2012. Paleontological Society Papers 18. pp. 133–165.
Grossman, E.L., Ku, T.L., 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chem. Geol. Isot. Geosci. Sect. 59, 59–74. https://doi.org/10.1016/0168-9622(86)90057-6

10.面白いと思った論文
対面学会は参加した方がよい Sanderson, K., 2023. Do scientific meetings matter? Turning up for talks brings surprise benefits. Nature 618, 15–16. https://doi.org/10.1038/d41586-023-01604-x
Tarduno, J.A., Cottrell, R.D., Bono, R.K., Rayner, N., Davis, W.J., Zhou, T., Nimmo, F., Hofmann, A., Jodder, J., Ibañez-Mejia, M., Watkeys, M.K., Oda, H., Mitra, G., 2023. Hadaean to Palaeoarchaean stagnant-lid tectonics revealed by zircon magnetism. Nature 618, 531–536. https://doi.org/10.1038/s41586-023-06024-5
Lavé, J., Guérin, C., Valla, P.G., Guillou, V., Rigaudier, T., Benedetti, L., France-Lanord, C., Gajurel, A.P., Morin, G., Dumoulin, J.P., Moreau, C., Galy, V., 2023. Medieval demise of a Himalayan giant summit induced by mega-landslide. Nature 619, 94–101. https://doi.org/10.1038/s41586-023-06040-5
Zhang, Y., Westaway, K.E., Haberle, S., Lubeek, J.K., Bailey, M., Ciochon, R., Morley, M.W., Roberts, P., Zhao, J. xin, Duval, M., Dosseto, A., Pan, Y., Rule, S., Liao, W., Gully, G.A., Lucas, M., Mo, J., Yang, L., Cai, Y., Wang, W., Joannes-Boyau, R., 2024. The demise of the giant ape Gigantopithecus blacki. Nature 625. https://doi.org/10.1038/s41586-023-06900-0
Müller, R.T., Ezcurra, M.D., Garcia, M.S., Agnolín, F.L., Stocker, M.R., Novas, F.E., Soares, M.B., Kellner, A.W.A., Nesbitt, S.J., 2023. New reptile shows dinosaurs and pterosaurs evolved among diverse precursors. Nature 620, 589–594. https://doi.org/10.1038/s41586-023-06359-z
Lin, C.H., Wei, C.L., Ho, S.L., Lo, L., 2023. Ocean temperature drove changes in the mesopelagic fish community at the edge of the Pacific Warm Pool over the past 460,000 years. Sci. Adv. 9, 1–10. https://doi.org/10.1126/sciadv.adf0656
マンモスからテストステロン:Cherney, M.D., Fisher, D.C., Auchus, R.J., Rountrey, A.N., Selcer, P., Shirley, E.A., Beld, S.G., Buigues, B., Mol, D., Boeskorov, G.G., Vartanyan, S.L., Tikhonov, A.N., 2023. Testosterone histories from tusks reveal woolly mammoth musth episodes. Nature. https://doi.org/10.1038/s41586-023-06020-9

11.生圏セミナーのみんな頑張ってます
Eiki, S., 2023. 愛知県南知多町天神山遺跡出土の土器分析からみた遺跡構造の解明 Exploring the site structure from the analysis of pottery at Tenjinyama site , Minamichita town , Aichi prefecture 61–87. https://doi.org/10.18999/bulnum.038.05
Suga, E., Tsukada, K., Tarawneh, O., Massadeh, S., Kadowaki, S., 2023. Explaining the Increase in “High-quality Chert” in the Early Upper Paleolithic Artifacts in Southern Jordan: Quantitative Examination of Chert Mechanical Properties and Fracture Predictability. J. Paleolit. Archaeol. 6. https://doi.org/10.1007/s41982-023-00164-w
Matsumoto, H., Takahashi, S., Muto, S., Iizuka, T., 2023. REE geochemistry of conodont fossils from pelagic deep-sea sedimentary rocks 184–196. https://doi.org/10.2343/geochemj.GJ23017
Muto, S., Takahashi, S., Murayama, M., 2023. Conodont biostratigraphy of a Carboniferous–Permian boundary section in siliceous successions of pelagic Panthalassa revealed by X-ray computed microtomography. Front. Earth Sci. 11, 1–19. https://doi.org/10.3389/feart.2023.1162023
Watanabe, Y., Abe-ouchi, A., Saito, F., Ito, T., Kawamura, K., Chan, W., 2023. Astronomical forcing shaped the timing of early Pleistocene glacial cycles 1–11. https://doi.org/10.1038/s43247-023-00765-x
12.中部地方周辺の地質を調べて将来研究を妄想する
Kazuhiro, S., Seiji, H., Kouichi, M., 2023. 浜松市北区三ケ日町の秩父帯の石灰岩体から産出した ペルム紀アッセリアン中期 ― 後期のコノドント Middle late Asselian conodonts discovered from the limestone body in the Chichibu Belt , Mikkabi , Hamamatsu , central Japan 53–60. https://doi.org/10.18999/bulnum.038.04
13.北大集中講義前に日本列島の生い立ちについて考えた
Kojima, S., Tsukada, K., Otoh, S., Yamakita, S., Ehiro, M., Dia, C., Kirillova, G.L., Dymovich, V.A., Eichwald, L.P., 2008. Geological relationship between Anyui Metamorphic Complex and Samarka terrane, Far East Russia. Isl. Arc 17, 502–516. https://doi.org/10.1111/j.1440-1738.2008.00644.x
山北聡, n.d. 白亜紀横ずれすべり断層系としての中央構造線黒瀬川断層系による日本列島先白亜紀地質体の再配列過程の復元. 地質学論集.


# by stakahashi17 | 2024-02-10 11:09 | 論文紹介

卒論がおわったところです。

先週で、卒論発表会、修論発表会が終わりました。
朝から夕方まで発表を聞き続けるのですが、結構疲れます。

自分が関わった研究の発表なんか、ドキドキそわそわします。
事前議論と発表練習のかいあって、無事時間内に発表を終え、質疑も耐えなかったので、とてもよかったです。

発表会の日程が終わってからは、発案していた実験室の大掃除とワックスがけ、夕方からサロンで飲み会。
みんなで遅くまで残っていろいろ話せたのはよかったです。 

帰ってからはグッタリ、いったん休まないとしんどそうです。。。

# by stakahashi17 | 2024-02-06 22:21 | 所感

新年になっていた。

2024年がはじまってしまっていました。
昨年12月はとても忙しく、体調も悪くなり薬(ヤバいものではない)でごまかしながらなんとか仕事・授業に穴をあけずに乗り切った感じでした。学生さんの論文執筆を激励しつつ、年末年始のうちに実験室の整備。暮れにドラフト装置をついに建造したのでその周辺の整備をしたいと考えて連日頑張りましたが、カビ取りさび取りの途中までしか終わりませんでした。冷蔵庫や試薬棚を新調する予算はなさそうなので、もう少し頑張る必要がありそうです。自分の論文執筆も間があいてしまったので、早起きして取り組んでいきます。

病床で読んだ本、藤井一至「大地の五億年 せめぎ合う土と生き物たち」
現役の土壌研究者の書いた土壌にまつわる研究や知識とさまざまなエピソードが紹介された本。古生代石炭紀のリグニンや白色腐朽菌の進化の話、土壌中の豆の窒素固定の話(新世代に進化!?)いろいろかみ砕いて語られている。引用文献について本文にはないが巻末にまとめられてるので、詳しくはそれらの論文・文献にあたるとよさそう(天空の城ラピュタもリストアップされている「土から離れては生きられないのよ」)。日本の土壌の酸性化の話や、輸出入に関わった窒素やリンの収支の話(日本は海外から肥料を輸入し、結局は汚染源を持ち込んでしまっている)林業の話などが皮肉を混じえて語られている(個人的にはそのような話は好き)。

# by stakahashi17 | 2024-01-13 21:57 | 所感

遂に体調を崩す。

土日休みなく出張し歩いて、遂に体調を崩してしまいました。
風邪をひくと暗いこと考えますね。
研究作業も授業のトークも全然ダメ、ああ、ロボットに代わってもらいたい。

忙しさのクライマックスは、先週末の環境史学会の世話人準備。
一旦、授業準備や論文リバイスを止めて一度こちらの仕事に全集中。・・している間に体調を崩しました。急に寒くなりましたしね。

学会の開催地は金沢大学でした。

名古屋ー金沢間、遠すぎでした。
金沢と名古屋って地図上では近いように見えるんですが、鉄道でつないでみると案外遠いのです。
電車も新幹線ほど本数はなく、土日祝日は観光客で込み、席を早くから予約しておかないと席がなくて2−3時間自由席で立ち乗りになります。
ギリギリの甘い準備で臨んだ私の旅程は、何時間という単位で立ち乗りで電車移動することになってしまいました。

7時に集発して13時の金沢大に着く(自分の出番ギリギリ)、帰りは17時に出発して22時過ぎに名古屋に着く、
グッタリです。

# by stakahashi17 | 2023-12-08 20:26 | 所感